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ABSTRACT 
Lidar, Sonar, and Vision-based measurements are often used to preview terrain topology 

for unmanned ground vehicles. Environmental conditions such as wet or snow-covered roads, 
shadows, superficial ground coverings, and deceptive surface textures can lead to erroneous 
measurements.  Tactile terrain prediction is both an alternative and a supplement to existing 
measurement systems.  Tactile feedback from an array of low-cost sensors on the moving vehicle 
is used to generate low wave-number terrain profile predictions.  This paper presents tactile 
terrain prediction results evaluated on four unique courses.  Prediction error data are presented 
up to 25m in front of the vehicle.  Results indicate 0.02-0.2m RMS error and 0.18-1.0m peak error 
at a 10m look-ahead distance.  As expected, the prediction errors decrease exponentially as the 
look-ahead distance decreases.  The relatively small prediction errors suggest that the proposed 
tactile terrain prediction method is a viable low-cost option for use in autonomous and tele-
operated ground vehicles. 

 
 
 

INTRODUCTION 
Unmanned ground vehicles (UGV’s) have demonstrated 

an ability to support in theater operations including missions 
such as reconnaissance, surveillance, supply transport, and 
protection, as well as neutralizing improvised explosive 
devices [1].  Future operational needs call for increased 
levels of autonomy and perception-based adaptive tactical 
behavior.  Current autonomous and tele-operated ground 
vehicles typically employ overly conservative path planning 
and driving strategies to ensure safe operation over 
challenging and uncertain terrain.  UGV platforms are 
expected to achieve significant increases in performance 
through an improved understanding of local terrain 
characteristics [1], thereby enabling the vehicle to optimally 
adjust driving strategies and path planning to maximize 
performance. 

Lidar or ladar measurement systems have been used on 
UGV’s to provide preview information of the terrain 
topology in the immediate path of the vehicle [2-4].  Vision-
based measurement systems are being used more frequently 
to provide similar terrain preview information to either 
replace or supplement lidar data [5-8].  Unfortunately, both 

of these measurement solutions often provide erroneous 
terrain measurements for common environmental conditions 
such as wet or snow-covered roads, shadows, superficial 
ground coverings, and deceptive surface textures [9]. 

Tactile feedback is an emerging solution that can be 
considered as either an alternative or a supplement to 
existing terrain measurement systems, depending on the 
application needs.  Although a variety of strategies have 
been developed, tactile feedback typically utilizes an array 
of low-cost sensors attached to the moving UGV to predict 
the macro-scale features of local terrain in the immediate 
path of the vehicle [10-11].  Tactile feedback uses past 
history to extrapolate future terrain profile information. 

The objective of this paper is to document a preliminary 
evaluation of a proprietary tactile feedback method for 
terrain profile prediction.  This tactile terrain prediction 
method was implemented on a 6-DOF human-in-the-loop 
(HIL) driving simulator, and was subsequently evaluated on 
four unique test courses under a variety of operating 
conditions.  Experimental prediction errors at look-ahead 
preview distances up to 25m are presented. 
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TACTILE TERRAIN MEASUREMENTS 
Figure 1 depicts a UGV traveling along a path s through a 

Cartesian coordinate system defined by coordinates (x, y, z).  
Path planning algorithms require information about the 
terrain surface topology immediately in front of the vehicle 
as indicated by the green triangular patch in figure 1.  The 
extent of the look-ahead preview distance will ultimately 
depend on the maximum speed that the UGV will be 
traveling, as well as the computational speed of the path-
planning algorithm; however, this distance is always finite. 

 

 
Figure 1. Unmanned ground vehicle with triangular look-

ahead terrain preview region 

The tactile terrain prediction algorithm evaluated in this 
effort is represented by the block diagram of figure 2.  
Relatively low-cost on-board sensors such as accelerometers 
and inclinometers [11] mounted on the UGV provide tactile 
measurements of the terrain topology at the current location. 
These measurements are combined with a finite and 
immediate past history of similar terrain topology data as 
indicated in figure 2.  This historical data is then used to 
predict the low wave-number features of the terrain in a 
finite look-ahead preview region using an extrapolation 
technique.  The explicit details of this algorithm are 
restricted from publication, pending a patent filing. 

 

 
Figure 2. Unmanned ground vehicle with triangular look-

ahead terrain preview region 

As should be expected, the tactile feedback approach does 
not have the ability to predict obstacles, and the prediction 
error is expected to increase as the look-ahead preview 
distance increases.  Even with this known limitation, 
predictions of terrain topology based on tactile feedback can 
be fused with lidar or vision-based data to overcome the 
measurement deficiencies, and ultimately improve the 
overall accuracy for path-planning and autonomous 

navigation.  Ideally for UGVs on rough terrain, tactile terrain 
prediction algorithms will enable the processing of lidar 
and/or vision data to focus on obstacle detection through 
data fusion with the predicted terrain profile. 

HIL EXPERIMENTAL TEST PLATFORM 
In order to evaluate the performance of the proprietary 

tactile terrain prediction method over a range of terrain 
courses, vehicles, drivers, and operational conditions, the 
prediction system was integrated with a 6-DOF human-in-
the-loop (HIL) driving simulator as shown in figure 3. 

In this HIL driving simulator, the steering, throttle, brake, 
and gear selection commands from the human driver are 
processed through a natural cockpit interface.  These 
commands are applied as inputs to one of many possible 
vehicle dynamics simulation models, which interact with 
one of many possible terrain maps to provide visual, audio, 
6-DOF motion, and tactile feedback to the driver.  Within 
the virtual environment, all pertinent signals of interest were 
available for predicting the look-ahead terrain profile.  In 
order to more accurately represent a real vehicle on actual 
terrain, apriori knowledge of the terrain profile was not used 
in this study. 

 
Figure 3.  6-DOF Driving Simulator used for experimental 

HIL testing of tactile terrain prediction algorithm 

 

EVALUATION CASE STUDIES 
Four test courses were selected to evaluate the tactile 

terrain prediction method.  The first three courses were 
paved tracks: (A) Road America, in Elkhart Lake, 
Wisconsin; (B) Virginia International Raceway, in Alton, 
Virginia; and (C) Zandvoort, in the Netherlands.  The fourth 
course was a mixture of off-road terrain and rough 
pavement: (D) Pikes Peak, in Colorado Springs, Colorado.  
These courses and the corresponding test conditions are 
summarized in table 1. 
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Table 1.  Summary of courses and drivers used in case study. 
Case Course Driver Course Description 

A Road 
America 

Human 6604 m course length 
48 m elevation change 

B Virginia Int’l 
Raceway 

AI 6359 m course length 
46 m elevation change 

C Zandvoort AI 4427 m course length 
9 m elevation change 

D Pikes Peak Human 11630 m course length 
914 m elevation change 

 
Figure 4 is a plot of overhead views for each of the four 

test courses where the x–axis represents the easting direction 
in meters, and the y–axis represents the northing direction in 
meters.  Waypoint markers have been included on each of 
the subplots in figure 4.  For courses A, B, and C, the 
waypoint spacing is 1000 meters, and for course D, the 
waypoint spacing is 2000 meters.  The waypoint markers 
with subscript-1 represent the starting point for each test. 

 
Figure 4.  Test courses:  (A) Road America, (B) Virginia 
International Raceway, (C) Zandvoort, (D) Pikes Peak. 

From table 1, notice that courses A and B are similar in 
length and elevation change.  Course C was the shortest with 
the least amount of elevation change, and course D was the 
longest with the largest elevation change.  Courses A and D 
were driven with a human driver in the loop to simulate a 
tele-operated ground vehicle, and courses B and C were 

driven with an artificial intelligence (AI) driver to simulate a 
fully autonomous ground vehicle.  During the testing, both a 
human and an AI driver were independently allowed to drive 
on the same test course.  No significant differences were 
observed between the prediction errors for the fully 
autonomous and the tele-operated cases. This is a strong 
testament to the robustness of the proprietary tactile terrain 
prediction algorithm to driver style and speed.  In all test 
cases, the ground vehicle speeds ranged from zero to 80 
kilometers/hour. 

TERRAIN PREDICTION RESULTS 
The results of each of the four test cases are presented in 

figures 5, 6, 7, and 8 respectively.  Each figure contains four 
subplots, and each subplot shares a common horizontal axis, 
which is the path position s in meters.  The topmost subplot 
in each figure is the elevation profile z in meters, as a 
function of path position.  The corresponding waypoint 
markers are included on the elevation profiles to enable 
cross-referencing with figure 4.  The second subplot from 
the top of each results figure is the localized Grade of the 
terrain profile expressed with units of degrees.  The grade is 
a measure of the spatial rate of change of elevation along the 
path.  The third subplot from the top of each figure is the 
localized Grade Rate, which is the spatial rate of change of 
the grade along the path.  The units of grade rate are 
expressed here as degrees/meter; however, the actual units 
are not critical to the analysis as will be shown below.  The 
grade and grade rate subplots in each results figure are not 
directly part of the tactile terrain profile prediction method.  
They are merely included here for analysis purposes. 

The bottom subplot in each results figure contains the most 
important data.  These subplots indicate the Prediction 
Error, expressed in meters, at five equally spaced look-
ahead locations along the path in front of the vehicle.  Note 
that the tactile terrain prediction algorithm is actually 
designed to predict the profile over a continuum of points in 
the immediate path of the vehicle; however, only a discrete 
set of look-ahead points at five meter increments are 
presented here for brevity. 

One segment of terrain between waypoints A5 and A6 in 
figure 5 has a very flat elevation profile.  As expected in this 
region, the prediction error is nearly zero up to a 25m look-
ahead distance.  The prediction error in figure 5, and all 
subsequent results figures, can be characterized as zero-
mean with occasional oscillatory bursts. 

As indicated in figure 4, each test course has multiple turns 
in both directions so steering was a logical initial choice for 
the root cause of the prediction error bursting. After direct 
comparison of the prediction error bursting with steering 
angle, no correlation could be found.  This led to an analysis 
of grade and grade rate. 
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Figure 5.  Terrain prediction errors on Road Atlanta course. 

 
Figure 6.  Terrain Prediction errors on Virginia International 

Raceway course. 

 

 
Figure 7.  Terrain prediction errors on Zandvoort course. 

 
Figure 8.  Terrain prediction errors on Pikes Peak course. 
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In order to quantify the performance of the tactile terrain 
profile estimation method, the worst case values of the 
prediction errors were extracted from the data in figures 5, 6, 
7, and 8.  Table 2 contains a summary of the peak prediction 
errors.  Since all four of the figures above clearly indicate 
that the peak errors occur relatively infrequently, the rms 
prediction errors were also computed, and are presented in 
table 3. 

 
 
Table 2:  Peak Prediction Errors (all units are in meters) 

Look-Ahead A B C D 
5 m 0.063 0.076 0.103 0.483 

10 m 0.184 0.213 0.314 1.098 
15 m 0.376 0.422 0.671 2.072 
20 m 0.650 0.701 1.158 3.312 
25 m 1.006 1.037 1.775 4.863 

 
 
Table 3:  RMS Prediction Errors (all units are in meters) 

Look-Ahead A B C D 
5 m 0.007 0.009 0.013 0.086 

10 m 0.022 0.026 0.039 0.220 
15 m 0.048 0.056 0.082 0.422 
20 m 0.087 0.101 0.143 0.696 
25 m 0.139 0.161 0.220 1.036 

 
 
Closer inspection of figures 5, 6, 7, and 8 indicates that 

localized spikes in the prediction errors are highly correlated 
to corresponding spikes in the grade rate.  This means that 
the grade rate, which can effectively be measured using 
tactile feedback data, provides a real-time mechanism for 
predicting the accuracy of the look-ahead data.  Ultimately, 
this means that instantaneous spikes in the grade rate will 
cause the look-ahead prediction errors to increase and then 
rapidly return to nominal levels. 

For each test case, the results from both tables 2 and 3 also 
indicate a common trend that the prediction error increases 
approximately exponentially with look-ahead distance.  This 
trend is completely expected considering that the prediction 
method is an extrapolation based on current and past data. 

Table 4 summarizes the non-dimensional crest factor data 
for each of the prediction error curves in figures 5-8.  The 
crest factor is defined to be the ratio of the peak error to the 
rms error.  Notice from table 4 that courses A, B, and C all 
have very similar prediction error crest factors, which are 
relatively high values.  Track D has a lower prediction error 
crest factor, indicating that the rms error is closer to the peak 
error; however, a crest factor of 5.0 is still relatively high.  It 
is also interesting to note that in courses A, B, and D, the 

prediction error crest factor decreases as the look-ahead 
distance increases, which is expected.  The smallest 
prediction error crest factors for case C occur at 5m and 
10m. 

 
Table 4:  Crest Factor analysis (non-dimensional) 

Look-Ahead A B C D 
5 m 9.00 8.44 7.92 5.62 

10 m 8.36 8.19 8.05 4.99 
15 m 7.83 7.54 8.18 4.91 
20 m 7.47 6.94 8.10 4.76 
25 m 7.24 6.44 8.07 4.69 

 
When the tactile terrain prediction algorithm is used to 

supplement existing measurement systems for improving the 
accuracy of path planning, both the localized grade rate 
information and the known exponential error trend can be 
exploited to determine error covariances for Kalman-based 
data fusion.  Similar to the limitation of all tactile feedback 
prediction algorithms, unfortunately, the grade rate 
information cannot be used to predict obstacles. 

Although not shown in this paper, the same tactile 
feedback method used for predicting the terrain profile along 
the vehicle path can also be used for predicting the terrain 
roll angle along the path.  This lateral profile information 
when combined with the longitudinal profile information 
provides a more complete picture of the look-ahead terrain. 

CONCLUSIONS 
A proprietary tactile terrain prediction method was 

integrated into a HIL driving simulator for evaluation on 
four unique test courses.  Two of the courses were driven 
with human drivers to simulate tele-operation of a UGV, and 
the other two courses were driven with a fully autonomous 
UGV.  As expected, the prediction errors decrease as the 
look-ahead distance decreases, and the error tends to follow 
an exponential behavior.  In all cases up to 25m look-ahead 
distance, the prediction errors can be characterized as having 
a relatively high crest factor ranging from a 4.69 to 9.0, 
which means that the peak errors occur infrequently.  The 
peak errors are correlated to the grade rate and therefore can 
be accommodated in practice. 
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